
Kail
Организатор
Организатор
- Регистрация
- 09.04.2020
- Сообщения
- 392 204
- Реакции
- 38 211
- Монеты
- 1 191
- Оплачено
- 0
- Баллы
- 0
- #SkladchinaVip
- #1
[БХВ] Машинное обучение для приложений высокого риска: подходы к ответственному искусственному интеллекту [Джеймс Кертис, Парул Панди, Патрик Холл]
- Ссылка на картинку
-
Книга представляет собой комплексное руководство по применению искусственного интеллекта и машинного обучения (ИИ/ML) с целью снижения рисков для современного бизнеса, связанного с использованием этих технологий. Рассмотрены основы управления рисками и компьютерной безопасности, нормативные акты, ответственность за качество продуктов, основанных на ML, а также объяснимые модели и методы их проверки, включая новый фреймворк управления рисками NIST AI. Читателю предложен углубленный взгляд на программирование с использованием Python и подробными примерами для структурированных и неструктурированных данных. Особое внимание уделяется объяснимым бустинговым машинам, библиотеке XGBoost и методам повышения качества моделей ML. Представлены основанные на реальном опыте советы о том, как организовать успешную работу с приложениями высокого риска. Приведены практические примеры, иллюстрирующие важность и сложность внедрения ML в различных отраслях.
Показать больше
Зарегистрируйтесь
, чтобы посмотреть скрытый контент.