Скачать [Центр digital-профессий ITtensive] Машинное зрение: распознавание объектов на Python

Информация
Цена: 195 РУБ
Организатор: Kail Kail
Ссылки для скачивания
Kail
Kail
Организатор
Организатор
Регистрация
09.04.2020
Сообщения
392 204
Реакции
38 222
Монеты
1 191
Оплачено
0
Баллы
0
  • #SkladchinaVip
  • #1
[Центр digital-профессий ITtensive] Машинное зрение: распознавание объектов на Python
Ссылка на картинку

Чему вы научитесь

  • Распознавание чисел и букв на фотографиях
  • Использование нейронных сетей на реальных данных
  • Обработка и коррекция изображений
  • Искусственные нейронные сети: слои, веса, обучение
  • Модели нейронных сетей Keras/TensorFlow
  • Использование LeNet, AlexNet, VGG и ResNet для распознавания цифр
  • Оптимизация нейронных сетей
  • Функции оптимизации: SGD, RMSprop, (N)adam, Adamax
  • Перенос обучения нейронных сетей
  • Изменение контраста, гистограммы яркости и резкость
  • Курсовой проект: Распознавание номеров автомобилей
Описание
Первый курс из серии Машинное зрение посвящен распознаванию изображений с помощью нейронных сетей на Python. Курс состоит из 3 больших частей:
Введение в нейронные сети
Разберем основы нейросетей: нейрон, слои, связи, обратное распространение ошибки и многослойный перцептрон. Изучим особенности обучения и оптимизации нейросетей.
Погрузимся в сверточные нейросети и разберем архитектуры LeNet, AlexNet, VGG и ResNet.
Распознавание цифр
Применим теоретические знания на практике. Используем Python и Keras для создания и обучения моделей нейронных сетей для успешного распознавания рукописных цифр - набора MNIST.
Разберем все прикладные особенности работы с нейросетями в Keras:
  • Особенности оцифрованных изображений.
  • Создание моделей и слоев.
  • Преобразование форм данных (многомерных массивов).
  • Генераторы и дополнение изображений.
  • Обучающая, тестовая и валидационные выборки.
  • Функции оптимизации и пакеты обучения.
  • Прикладная оптимизация нейросети.
  • Визуализация процесса обучения.
  • Пакетная нормализация, регуляризация и отсев.
  • Методы инициализации весов.
Распознавание автомобильных номеров
Используем обучающую выборку из изображений цифр автомобильных номеров для распознавания реального номера автомобиля.
  • Загрузка, фильтрация и преобразование изображений.
  • Генераторы обучения из директорий.
  • Изменение контраста, резкости и маски гистограмм изображений.
  • Распознавание одного из 21 класса изображений - цифры и буквы.
  • Использование обученной модели на реальных данных.
Курсовым проектом будет ваша собственная обученная нейросеть, распознающая номера автомобилей по фотографии.
Для кого этот курс:
  • Разработчики систем машинного зрения
  • Инженеры по работе с графическими данными
  • Научные работники и исследователи данных
Показать больше
 
Зарегистрируйтесь , чтобы посмотреть скрытый контент.
Поиск по тегу:
Теги
python udemy автор sharm.knit автор алекс вайлдер машинное зрение нейросескинг свёрточные сети центр digital-профессий ittensive
Похожие складчины
Kail
Ответы
0
Просмотры
741
Kail
Kail
Kail
Ответы
0
Просмотры
298
Kail
Kail
Kail
Ответы
0
Просмотры
566
Kail
Kail
Kail
Ответы
0
Просмотры
554
Kail
Kail
Kail
Ответы
0
Просмотры
340
Kail
Kail
Показать больше складчин

Войдите или зарегистрируйтесь

Вы должны быть авторизованны для просмотра материала

Создать аккаунт

Создать учетную запись займет не больше минуты!

Войти

Уже зарегистрированы? Просто войдите.