• Форумы
  • Бухгалтерия

Скачать [МФТИ] Количественный финансовый аналитик 2022 [Александр Нозик, Ролан Гринис, Владимир Пальмин, Константин Тихонов]

Информация
Цена: 495 РУБ
Организатор: Kail
Записаться в список
Ссылки для скачивания
Скачать
Скачать
Скачать
Kail
Организатор
Организатор
Регистрация
09.04.2020
Сообщения
392 204
Реакции
38 195
Монеты
1 191
Оплачено
0
Баллы
0
18.08.2022
  • #SkladchinaVip
  • #1
[МФТИ] Количественный финансовый аналитик 2022 [Александр Нозик, Ролан Гринис, Владимир Пальмин, Константин Тихонов]
Посмотреть вложение 27453​
Программа профессиональной переподготовки.

Инфестиционные компании, банки, финансовые институты сложно представить без количественного анализа. Быть количественным финансовым аналитиком – это значит применять научные методы при изучении финансовых рынков.

Программа будет интересна
математикам, физикам, программистам, специалистам с техническим образованием. Всем, кто готов совершенствовать знания и построить карьеру в финансовом секторе.

Вас ждут сложные задачи, интенсивная самостоятельная работа. Возможность общаться со студентами и преподавателями занимающими топовые позиции в крупных IT-компаниях. Выбрав профессию, вы присоединяетесь к группе и проходите программу профессиональной переподготовки вместе с основной магистратурой.

Блок 1 - Курс Вычислительные финансы - 1 семестр
Модуль 1 - Основы моделирования и стохастические процессы

  • Стохастические процессы
  • Моделирование финансовых рынков
  • Принцип отсутствия арбитража
  • Стохастические дифференциальные уравнения
  • Процессы диффузии
  • Формула Ито Теорема Гирсанова
Модуль 2 - Риск-нейтральная валюация
  • Риск-нейтральная мера
  • Изменение деноминации
  • Геометрическое броуновское движение
  • Модель Блэка-Шоулза-Мертона
  • Аналитические методы для европейских опционов
  • Уравнение Блэка-Шоулза
Модуль 3 - Модели с стохастической волатильностью
  • Кривая волатильности
  • Модель SABR
  • Метод сингулярной пертурбации
  • Модель Хестона
  • Методы Фурье
  • Калибровка поверхности волатильности с алгоритмом LM
Модуль 4 - Монте-Карло симуляции
  • Точная симуляция Андерсена для динамики Хестона
  • Монте-Карло симуляции для экзотических опционов
  • Алгоритм LSM для Американских и Бермудских опционов
  • Дифференцированное программирование и сопряженные методы
Блок 1 - Курс Вычислительные финансы - 2 семестр
Модуль 5 - Моделирование производных по процентным ставкам

  • Моделирование финансовых инструментов по процентным ставкам (облигации, кривая доходности, плавучии ставки, форвардный курс, свопы, свопционы, отзывные свопы)
  • Модели краткосрочных ставок и конструкция HJM, Стохастическая модель LMM
Модуль 6 - Корректировки валюации от риска дефолта контрагента
  • Облигации с дефолтным купоном
  • Много-кривая доходности
  • Кредитные дефолтные свопы
  • Калибровка вероятности дефолта
  • Кредитный риск по контрагенту
  • Кредитные корректировки валюации финансовых производных (CVA)
Модуль 7 - Калибровка, расчет риска, корректировки валюации - примеры
  • Гибридная модель Хестона для Европейских и Бермудских опционов
  • Кросс-валютная модель с краткосрочными ставками и с кривой по ставкам
Блок 2 - Курс Вычислительные методы - 1 семестр
  • Векторные и матричные нормы. Унитарные матрицы. SVD разложение. Проекторы. Задача о наименьших квадратах. QR факторизация.
  • Вычисления с плавающей точкой. Вычислительная устойчивость.
  • Матричный ранг. Приближение низкого ранга и приложения SVD.
  • Системы линейных уравнений. Число обусловленности.
  • Собственные вектора и собственные значения. Методы решения симметричной задачи на собственные значения.
  • Разреженные матрицы. Библиотеки numpy и scipy. Итеративные методы линейной алгебры.
  • Решение систем нелинейных уравнений. Введение в методы оптимизации
Блок 2 - Курс Вычислительные методы - 2 семестр
  • Численное интегрирование и дифференцирование. Методы интерполяции. Решение линейных интегральных уравнений.
  • Основные численные методы решения обыкновенных дифференциальных уравнений и уравнений в частных производных.
  • Введение в методы Монте-Карло. Методы сэмплирования.
  • Марковские цепи Монте-Марло. Алгоритм Метрополиса — Гастингса. Сэмплирование по Гиббсу. Гамильтонов Монте-Карло.
  • Модели пространства состояний. Линейные динамические системы. Фильтр Калмана.
Блок 3 - Курс Статистические методы и анализ данных - 1 семестр
Модуль 1 - Теория принятия статистических решений.

  • Решения в детерминированных задачах.
  • Решения в недетерминированных задачах, функция риска.
  • Условная вероятность, стратегии принятия решений.
Модуль 2 - Основные понятия теории вероятности.
  • Определения вероятности.
  • Функция правдоподобия.
  • Точечные и интервальные оценки параметров распределений.
  • Доверительные интервалы.
Модуль 3 - Погрешности в физическом эксперименте.
  • Статистические и систематические погрешности.
  • Свойства распределений при замене переменных.
  • Сложение погрешностей.
  • Сложение результатов различных экспериментов.
Модуль 4 - Свойства распределений.
  • Биномиальное распределение и распределение Пуассона.
  • Нормальное распределение и его свойства.
  • Средние значения, моменты распределений.
Модуль 5 - Проверка статистических гипотез.
  • Функции случайных переменных.
  • Статистические критерии и их свойства.
  • Методики построения критериев.
  • Критерии согласия данных с теорией.
Модуль 6 - Оценка параметров.
  • Параметрические критерии.
  • Метод максимума правдоподобия и хи-квадрат.
  • Использование функции правдоподобия для построения интервальных оценок.
  • Интервальные оценки в случае нормального распределения.
Модуль 7 - Современные методы анализа данных (дополнительно).
  • Фитирование экспериментальных кривых. Критерии качества фита. Компьютерные методы решения задач оптимизации.
  • Многопараметрический анализ. Анализ корреляций.
  • Информация Фишера и ее применение. Максимальная информация и граница Рао — Крамера.
  • Два подхода к вероятности: частотный подход и субъективная вероятность. Проблема уникальных событий.
  • Использование компьютера для анализа данных эксперимента.
Блок 3 - Курс Статистические методы и анализ данных - 2 семестр
Модуль посвящён работе над проектом. Примеры тем проектов:

  • Байесовское глубокое обучение
  • Информация Фишера и активное обучение
  • Машинное обучение на Котлине, KotlinDL
  • Глубокое обучение в кино
  • Байесовская оптимизация
  • MCMC на Джулии
Показать больше
 
Зарегистрируйтесь , чтобы посмотреть скрытый контент.
Реакции: На это отреагировал(а) ViVa11
Поиск по тегу:
Теги
александр нозик бухгалтерия и финансы владимир пальмин количественный финансовый аналитик константин тихонов мфти ролан гринис
Похожие складчины
Скачать [МФТИ] Вычислительные финансы. 2022 [Ролан Гринис]
  • Kail
  • 06.08.2022
0
Ответы
0
Просмотры
569
06.08.2022
Kail
Скачать Финансовый и инвестиционный анализ [Владимир Слепунин]
  • Kail
  • 11.09.2020
0
Ответы
0
Просмотры
488
11.09.2020
Kail
Скачать [МФТИ] Цифровая экономика - современная промышленная революция [Елена Анохова, Константин Егошин]
  • Kail
  • 03.12.2024
0
Ответы
0
Просмотры
185
03.12.2024
Kail
Скачать [SkillFactory] Финансовый аналитик [Татьяна Богданова, Марина Третьякова]
  • Kail
  • 19.09.2022
0
Ответы
0
Просмотры
189
19.09.2022
Kail
Скачать Финансовый анализ МСФО в Excel [Владимир Прохоров]
  • Kail
  • 12.12.2021
0
Ответы
0
Просмотры
1K
12.12.2021
Kail
Показать больше складчин

Войдите или зарегистрируйтесь

Вы должны быть авторизованны для просмотра материала

Создать аккаунт

Создать учетную запись займет не больше минуты!

Регистрация

Войти

Уже зарегистрированы? Просто войдите.

Войти
Поделиться:
Facebook Twitter WhatsApp Электронная почта
  • Форумы
  • Бухгалтерия
  • Русский (RU)
  • Обратная связь
  • Условия и правила
  • Политика конфиденциальности
  • Помощь
Меню
Войти

Регистрация

  • Форумы
    • Новые сообщения
  • Мои складчины
  • Служба поддержки
  • Новые складчины
    • Новые сообщения
    • Последняя активность
    • Новые оценки тем
  • Как зарегистрироваться?