Скачать [proglib] Онлайн-курс по математике в Data Science 2023 [Леонид Крицков, Татьяна Захарова]

Информация
Цена: 500 РУБ
Организатор: Kail Kail
Ссылки для скачивания
Kail
Kail
Организатор
Организатор
Регистрация
09.04.2020
Сообщения
392 203
Реакции
38 242
Монеты
1 191
Оплачено
0
Баллы
0
  • #SkladchinaVip
  • #1
[proglib] Онлайн-курс по математике в Data Science 2023 [Леонид Крицков, Татьяна Захарова]
Ссылка на картинку
Кому подойдет этот курс
Новичкам в IT

Курс поможет освоить востребованную профессию Data Scientist, прокачать мышление для дальнейшего изучения анализа данных и computer science. Для его освоения достаточно школьных знаний математики.

Соискателям
Курс охватывает программу поступления в школу анализа данных Яндекса и те темы, что спрашивают на собеседования на позицию по анализу данных. Вы сможете получить обратную связь от преподавателей МГУ с многолетним опытом обучения студентов.

Чему вы научитесь на курсе
Поймете математические термины

Усвоите основную терминологию, сможете читать сложные статьи по Data Science и получать новые знания без постоянных обращений к поисковику.
Разбетесь в математических основах машинного обучения
Изучите математические основы Machine Learning и узнаете роль чисел, формул и функций в разработке алгоритмов машинного обучения.
Расширите свое сознание
Математика прокачивает мозг и развивает абстрактное мышление. В курсе много задач разного уровня сложности, что позволит вам набить руку и быть готовым к любым вопросам «на засыпку» на собеседовании.


Программа курса
Базовая математика для Data Science

  • 01. Начала теории множеств
  • 02. Геометрическая прогрессия. Векторная алгебра
  • 03. Теория вероятностей. Рациональные уравнения
  • 04. Рациональные уравнения. Алгебраические уравнения
  • 05. Иррациональные уравнения. Графический способ решения систем
  • 06. Неравенства
  • 07. Неравенства продолжение
  • 08. Функции график и свойства
  • 09. Графики функций и их преобразования
  • 10. Производная, исследование функций
  • 11. Исследование функций. Интреграл
  • 12. Контрольная работа
Математика для Data Science 2.0
Модуль 1. - Математический анализ
  • О курсе
  • Введение в модуль
  • Теория множеств
  • Числовые последовательности
  • Пределы числовых функций. Асимптотическое сравнение функций
  • Вебинар по решению задач домашней работы
  • Непрерывность функции
  • Дифференциальное исчисление
  • Дифференцируемость функций многих переменных. Поиск экстремумов
  • Применения формулы Тейлора
  • Определенный интеграл
  • Несобственный интеграл
  • Интеграл Лебега
  • Числовые и функциональные ряды
  • Функции многих переменных
  • Нахождение наибольшего и наименьшего значений функций на отрезке
Модуль 2. Комбинаторика
  • Основные формулы комбинаторики
  • Принцип Дирихле
  • Перестановки, размещения и сочетания с повторениями
  • Консультация по комбинаторике и теории вероятностей
Модуль 3. Теория вероятностей
  • Основные понятия, классическая модель вероятности
  • Непрерывные случайные величины
  • Численные характеристики случайных величин
  • Основные законы распределения случайных величин
  • Моделирование случайных величин с заданным распределением
  • Основные теоремы теории вероятностей
  • Основные понятия матстатистики. Точечные оценки и их свойства
  • Методы построения оценок неизвестных параметров
  • Проверка статистических гипотез
Модуль 4. Алгебра
  • Матрицы и операции над ними
  • Определитель квадратной матрицы
  • Обратная матрица
  • Однородные и неоднородные системы уравнений
  • Линейная зависимость и ранг
  • Комплексные числа
  • Линейные отображения
  • Собственные векторы линейного отображения
  • Скалярное произведение в линейном пространстве
  • Отображения в евклидовом пространстве
  • Билинейные и квадратичные формы
Модуль 5. Онлайн-сессии
  • Word2vec
  • Градиентный спуск
  • Backpropagation
  • Случайный лес
  • Классификация наблюдений логистическая и пробит регрессии
  • Метод ближайших соседей (KNN)
  • Классификация наблюдений байесовский классификатор

Преподаватели курса
Леонид Крицков
Кандидат физико-математических наук, доцент факультета ВМК МГУ. Автор задачника "Алгебра и аналитическая геометрия: теоремы и задачи",используемого в преподавании на факультете ВМК МГУ. Имеет опыт преподавания линейной алгебры студентам более 25 лет. Является автором более 80 научных публикаций.
Татьяна Захарова
Кандидат физико-математических наук, доцент факультета ВМК МГУ. Имеет опыт преподавания теории вероятностей и математической статистики студентам более 28 лет. Является автором более 70 научных публикаций, в том числе связанных с обработкой больших объемов данных.
Показать больше
 
Зарегистрируйтесь , чтобы посмотреть скрытый контент.
Последнее редактирование:
Поиск по тегу:
Теги
proglib python алгебра анализ данных арифметика высшая математика информатика леонид крицков математика татьяна захарова
Похожие складчины
Kail
Ответы
0
Просмотры
1K
Kail
Kail
Kail
Ответы
0
Просмотры
226
Kail
Kail
Kail
Ответы
0
Просмотры
463
Kail
Kail
Показать больше складчин

Войдите или зарегистрируйтесь

Вы должны быть авторизованны для просмотра материала

Создать аккаунт

Создать учетную запись займет не больше минуты!

Войти

Уже зарегистрированы? Просто войдите.